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LETTER TO THE EDITOR 

On the Coulombic scattering of a charged particle 

B K Ridley 
Department of Physics, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK 

Received 15 November 1976, in final form 17 January 1977 

Abstract. Treating the Coulombic scattering of a charged particle by a random distribution 
of scatterers strictly as a two-body process, following an argument familiar in stellar 
dynamics, removes the divergence of the differential cross section towards small scattering 
angles. 

In the dynamics of gaseous or solid-state plasmas one of the central problems arises out 
of the long-range nature of the Coulomb interaction. In the case of gaseous plasmas the 
conventional approach has been based on the so called BBGKY hierarchy of equations 
to describe the non-equilibrium statistical mechanics of plasmas, and this has led to the 
Balescu-Lenard equation (see for example Montgomery and Tidman 1964), in which 
collective effects are included under the assumption that the interactions between 
particles are weak and long range. If long-range, correlated motion is ignored, an 
approach to the problem can be made on the basis of the behaviour of a test particle 
which suffers successive two-body collisions (see for example Chandrasekhar 1960, 
Spitzer 1962). Such collisions may be roughly divided into two categories: small- 
impact-parameter collisions resulting in large-angle scattering (nearest neighbour); and 
large-impact-parameter collisions resulting in small-angle scattering (distant interac- 
tions). The latter type of collision, seen as occurring almost continuously, represents 
the limiting case of a stochastic process familiar in Brownian motion. Emphasizing this 
category leads to a Fokker-Planck equation (Gasiorowicz et a1 1956, Rosenbluth et a1 
1957), in which screening provides a cut-off length which separates nearest-neighbour 
interactions (assumed to have negligible effect) from the rest. The complementary 
picture, in which infrequent, small-impact-parameter collisions with nearest neigh- 
bours are emphasized, leads to the Boltzmann equation, and this is the conventional 
model for charged-impurity scattering in semiconductors (Mott 1936, Brooks 195 1, 
Dingle 1955), where the perturbations induced by the weak but frequent collisions with 
more distant neighbours are taken to be negligible, or their time average imagined to be 
incorporated into the electronic band structure. In both the approach in which the 
individual particle obeys a Fokker-Planck equation, and in the approach which leads to 
a Boltzmann equation, there is the common problem of limiting the range of the 
two-body interaction. Now it is very commonly supposed that the only acceptable way 
of doing this is via screening, and that the Debye length alone determines the effective 
range of the Coulomb potential. It is the purpose of this letter to point out that the 
statistics of the problem contains a criterion more basic than screening. This criterion 
introduces an exponential function like the screening factor into the effective collision 
cross section, and it therefore allows a bridge to be made between screening and 
non-screening situations in two-body interaction models. 

L79 



L80 Letter to the Editor 

The basic idea is to be found in the field of stellar dynamics (Chandrasekhar 1942, 
1943) where, of course, screening does not occur, It may also be found influencing the 
derivation of the Fokker-Planck equation, based on the Holtsmark distribution, given 
by Gasiorowicz et a1 (1956). As far as the author is aware, however, the general 
conception has not been transparently isolated before. In order to effect such a 
transparency we need treat nothing more complex than the classical problem of 
Rutherford scattering and follow the general approach of that adopted by Chan- 
dresekhar (1943) to interpret the tail of the Holtsmark distribution. Our exponential 
function will be seen to arise purely out of the assumption that scatterers more distant 
than the nearest neighbour contribute nothing. To emphasize that our result is 
independent of screening, we assume the latter to be entirely absent. 

Classical theory shows that the angle of deflection 8 is related to the impact 
parameter b as follows: 

b = R ~0t(e/2) (1) 
where R = Ze2/4remv2.  (2% =charge on centre, E =permittivity, m = mass of par- 
ticle, assumed to have a single elementary charge, v = its velocity.) The question is, 
given a density N of identical scattering centres distributed at random, what is the 
probability of a particle being scattered through an angle lying between 8 and 8 +de? 
Through equation (1) we can translate that into the question: What is the probability of 
a scattering event having an impact parameter lying between b and b +db? The usual 
answer is to equate this with the probability of there being a scattering centre within the 
volume 2raob db, where a. is the average distance between scattering centres. For a 
random distribution this probability is 2rNaob db, which is then equated to the cross 
section, presented by all the centres, for scattering through an angle 0 into a solid angle 
dfi. Thus: 

whence, using equation (l), we can obtain 
Nao(+(B) d n  = 2rNaob(db( (2) 

(+(e) = f R 2  cosec4(e/2) (3 )  
which is the standard expression for the differential cross section. (The result given by 
quantum mechanics in the Born approximation is identical.) 

The error in this derivation is the assumption that the probability of a scattering 
event having an impact parameter lying between b and b +db is just the probability of 
there being a scattering centre there. That is certainly a necessary condition, but it is not 
enough. What has been implicitly assumed is that no scattering centre with a smaller 
impact parameter intervenes. If there were, then scattering by this centre would 
dominate, and in the spirit of the two-body interaction approximation the more remote 
centre would have no effect. Thus we require the probability that there is a scattering 
centre with impact parameter lying between b and b + db and that there is 00 centre with 
a smaller impact parameter. If P(b) is the probability of no scattering centres with 
impact parameter within b, then the right-hand side of equation (2 )  has to be multiplied 
by this term, and therefore: 

a(@ =:I?* cosec4(e/2)P(b). (4)  
To calculate P(b)  we note first of all that if p denotes the probability of there being 

no centre with impact parameter between b and b + db then: 

p = 1 - 2rNaob db ( 5 )  
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since 2?rNaob db is the probability that such a centre exists. Then by the usual law of 
probabilities: 

P(b +db) = P(b)p  (6) 

~ ( b )  = c exp(-?rNuob2). (7) 

and therefore it follows that: 

Since P(0)  = 1, it follows that C = 1. Replacing b according to equation (1) leads to the 
differential cross section: 

(8) 
which no longer diverges towards small scattering angles. 

The cross section is finite essentially because a third body intervenes and provides a 
cut-off, an effect which may be dubbed third-body interference. The consequences of 
third-body interference for the mobility determined by charged-impurity scattering in 
semiconductors will be published elsewhere. 

c+(e) =+R’ cosec4(8/2) exp[-?rNu@ cot2(e/2)] 
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